Phosphoinositide-3 Kinase-Akt Pathway Controls Cellular Entry of Ebola Virus
نویسندگان
چکیده
The phosphoinositide-3 kinase (PI3K) pathway regulates diverse cellular activities related to cell growth, migration, survival, and vesicular trafficking. It is known that Ebola virus requires endocytosis to establish an infection. However, the cellular signals that mediate this uptake were unknown for Ebola virus as well as many other viruses. Here, the involvement of PI3K in Ebola virus entry was studied. A novel and critical role of the PI3K signaling pathway was demonstrated in cell entry of Zaire Ebola virus (ZEBOV). Inhibitors of PI3K and Akt significantly reduced infection by ZEBOV at an early step during the replication cycle. Furthermore, phosphorylation of Akt-1 was induced shortly after exposure of cells to radiation-inactivated ZEBOV, indicating that the virus actively induces the PI3K pathway and that replication was not required for this induction. Subsequent use of pseudotyped Ebola virus and/or Ebola virus-like particles, in a novel virus entry assay, provided evidence that activity of PI3K/Akt is required at the virus entry step. Class 1A PI3Ks appear to play a predominant role in regulating ZEBOV entry, and Rac1 is a key downstream effector in this regulatory cascade. Confocal imaging of fluorescently labeled ZEBOV indicated that inhibition of PI3K, Akt, or Rac1 disrupted normal uptake of virus particles into cells and resulted in aberrant accumulation of virus into a cytosolic compartment that was non-permissive for membrane fusion. We conclude that PI3K-mediated signaling plays an important role in regulating vesicular trafficking of ZEBOV necessary for cell entry. Disruption of this signaling leads to inappropriate trafficking within the cell and a block in steps leading to membrane fusion. These findings extend our current understanding of Ebola virus entry mechanism and may help in devising useful new strategies for treatment of Ebola virus infection.
منابع مشابه
Identification of a novel pathway essential for the immediate-early, interferon-independent antiviral response to enveloped virions.
Viral infection elicits the activation of numerous cellular signal transduction pathways, leading to the induction of both innate and adaptive immunity. Previously we showed that entry of virion particles from a diverse array of enveloped virus families was capable of eliciting an interferon regulatory factor 3 (IRF-3)-mediated antiviral state in human fibroblasts in the absence of interferon p...
متن کاملHandicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway.
The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway controls many cellular processes that are important for the formation and progression of cancer, including apoptosis, transcription, translation, metabolism, angiogenesis, and cell cycle progression. Genetic alterations and biochemical activation of the pathway are frequent events in preneoplastic lesions and ...
متن کاملRegulation of MDR1 expression and drug resistance by a positive feedback loop involving hyaluronan, phosphoinositide 3-kinase, and ErbB2.
Multidrug resistance is a potent barrier to effective, long term therapy in cancer patients. It is frequently attributed to enhanced expression of multidrug transporters or to the action of receptor kinases, such as ErbB2, and downstream anti-apoptotic signaling pathways, such as the phosphoinositide 3-kinase/Akt pathway. However, very few connections have been made between receptor kinases or ...
متن کاملEther Lipid Analogues Cancer Cells by Rationally Designed Phosphatidylinositol Preferential Inhibition of Akt and Killing of Akt-Dependent
Activation of the PI3k/Akt pathway controls key cellular processes and contributes to tumorigenesis in vivo, but investigation of the PI3k/Akt pathway has been limited by the lack of specific inhibitors directed against Akt. To develop Akt inhibitors, we used molecular modeling of the pleckstrin homology (PH) domain of Akt to guide synthesis of structurally modified phosphatidylinositol ether l...
متن کاملThe PI3K/Akt pathway contributes to arenavirus budding.
Several arenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever (HF) disease in humans and pose a significant public health concern in regions where they are endemic. On the other hand, evidence indicates that the globally distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway part...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Pathogens
دوره 4 شماره
صفحات -
تاریخ انتشار 2008